Math 10/11 Honors: Section 4.2 Radians and Angles in Standard Position

1. Convert the following angles to radians in terms of π . Show your work.

a) 60°	b) 30°	c) 150°	d) 210°
e) 90°	f) 135°	g) 225°	h) 240°
i) 315°	j) 360°	k) 330°	I) 1050°

2. Convert the following to the nearest degree. Show your work.

a) $\frac{2\pi}{3}$	b) $\frac{2\pi}{6}$	c) $\frac{2\pi}{4}$	d) $\frac{5\pi}{3}$
e) $\frac{16\pi}{12}$	f) $\frac{11\pi}{3}$	g) $\frac{7\pi}{6}$	h) $\frac{15\pi}{4}$
i) $\frac{\pi}{12}$	$j) \frac{5\pi}{6}$	$k) \frac{3\pi}{20}$	$1) \frac{22\pi}{9}$

3. Determine the arc length that subtends each angle at the center of the circle with radius 10cm.

a) 60°	b) 150°	c) 240°
d) $\frac{\pi}{12}$	e) $\frac{5\pi}{3}$	f) $\frac{7\pi}{6}$

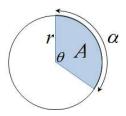
4. Graph each angle in standard position. Find the reference angle.

a) $\frac{2\pi}{3}$	$b) - \frac{10\pi}{6}$	c) $\frac{15\pi}{4}$	d) $-\frac{7\pi}{3}$
← →	←	←	← →
e) 800°	f) 1000°	g) -500°	h) -3000°
←	← → →	← → →	← →

5. In what quadrants are the following angles in?

a) 35°	b) 900°	c) $\frac{5\pi}{4}$	d) $\frac{22\pi}{3}$
e) -475°	f) -2590°	g) $\frac{-9\pi}{5}$	h) $\frac{-17\pi}{4}$

6. Evaluate each of the following trigonometric functions without a calculator:


a) sin 60°	b) cos 90°	c) $\tan \frac{\pi}{2}$	d) $\cos \frac{\pi}{3}$
e) sin 45°	f) tan 30°	g) $\sin \frac{\pi}{6}$	h) tan 0°

- 7. What is the smallest positive coterminal angle of 2000° ?
- 8. Give a general formula for all the coterminal angles of -5200°

- 9. Find the radius of a circle if an arc of 4cm subtends an angle of 30° on the circle.
- 10. What is the length of an arc subtended from the sector angle $\frac{\pi}{5}$ if the circle has a radius of 20cm?
- 11. What is the length of the radius of a circle with an arc length of 13.1 cm subtended from a sector of 42° ?

12. As the time changes from 1:00pm to 3:45pm on a clock, determine the change in radians of the minute hand. Determine the change in radians for the hour hand.

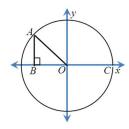
13. Derive a formula for the area, A, of a sector of a circle with radius "r", formed by an angle of θ radians. Derive a similar formula when the measure of the angle is in degrees

14. If arc "a" is 6π cm long and the central $\theta = 72^{\circ}$ then what is the area of the sector "A"?

15. Find the radius of a circle if an arc of 3 subtends an angle of 30° on the circle

16. Find the angle in degrees if an arc length of 5cm has a radius of 6cm.

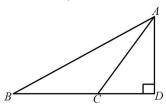
17. When an object is moving in a circle, its "angular velocity" is the angle per unit time through which it rotates about the center. A car tire has diameter 64cm. Determine its angular velocity, in radians per second, when the car is travelling at 100km/h.


18. What is the smallest angle formed by the x-axis and the line through the points (2,1) and (-8,7)

19. What is the sum of:
$$\sin^2(10^\circ) + \sin^2(20^\circ) + \sin^2(30^\circ) + \dots + \sin^2(170^\circ)$$

a) 1 b) 3 c) 5 d) 9 e) 10

20. In the sequence below, each angle is in radians. What is the largest number of consecutive terms of this sequence that can be positive?


$$\cos x, \cos(x+1), \cos(x+2), \cos(x+3), \cos(x+4), \cos(x+5), \cos(x+6)$$

21. Use a geometric approach with an unit circle to show that for any obtuse angle θ , $\sin \theta = \sin (\pi - \theta)$

22. Use the same approach above to show that for any obtuse angle θ , $\cos\theta = -\cos(\pi - \theta)$

23. Challenge: Use the figure below to prove that $\sin(a-b) = \sin a \cos b - \sin b \cos a$. Hint: Use the "Sine Law" if necessary.

